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Abstract
This bachelor thesis outlines the current state of the Android graphics pipeline. The
graphics pipeline is the part of Android which displays the user interface by using the
graphics processor.

This thesis begins by describing the principles of current graphics hardware. After-
wards the different hardware architectures of modern graphic processors are explained.

The main part of the thesis starts by looking at the history of the Android graph-
ics stack. An explanation of specific optimizations employed by Android and their
software implementation follows. The Android graphics pipeline is then explained
by demonstrating a sample application and tracing all drawing operations down the
pipeline to the actual rendering calls. Finally, current issues and problems like driver
support and overdraw are addressed.

Kurzfassung
Die vorliegende Bachelorarbeit erläutert den aktuellem Stand des Android-Grafikstacks.
Hierbei handelt es sich um den Teil von Android der Benutzeroberflächen mithilfe des
Grafikprozessors darstellt.

Zunächst wird der Aufbau und die Funktionsweise aktueller Grafikhardware erläutert.
Anschließend werden die verschiedenen Architekturen moderner Grafikprozessoren
beschrieben.

Im Hauptteil wird die Historie des Android-Grafikstacks betrachtet. Darauf aufbauend
werden konkrete Optimierungen und Implementierungsdetails von Teilen des Grafik-
stacks erklärt. Anhand eines Beispielprogrammes wird die Android-Grafikpipeline
untersucht und abschließend werden die Auswirkungen aktueller Probleme und The-
men wie Treibersupport und Overdraw getestet und bewertet.
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About the Source Code Listings

The source code listing in this thesis do not aim to be complete. To make the listings
more clear, imports and includes are omitted. In some cases, source code was
converted to pseudo-code. Likewise, no source code listing is intended to be compiled
or executed. All listings are solely for illustration purposes and need to be viewed in
their respective context.
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1. Introduction

The Android operating system has a wide base of users and application developers.
Android’s Application Programming Interface (API) for writing applications is well
documented and many tutorials are available on the web.

Unfortunately, documentation of the actual Android operating system is scarce. The
inner workings of the graphics pipeline in particular are only ever mentioned by Google
employees in blog posts and on conference talks. This thesis aims to provide a basic
overview of the graphics pipeline.

This thesis is targeted at interested developers with prior knowledge of the Android
framework. Readers can also use the official Android framework documentation1 and
the Android Open Source Project (AOSP) website2 as a reference.

The analysis and breakdown of the Android source code is based on Android 4.4.2 r2
(android-4.4.2_r23). All source code listings are also based on this Android version.

1.1. inovex GmbH

inovex GmbH4 was founded in 1999 in Pforzheim, Germany. Since then, it has been
managed by its sole owner and founder, Stephan Müller. inovex GmbH has about 13
employees, with offices in Pforzheim, Karlsruhe, Cologne and Munich.

The company is focused on contract work and is divided into multiple lines of business,
which are Application Development, Business Intelligence, IT Engineering and the

1http://developer.android.com/
2http://source.android.com/
3http://source.android.com/source/build-numbers.html
4http://www.inovex.de/

1

http://developer.android.com/
http://source.android.com/
http://source.android.com/source/build-numbers.html
http://www.inovex.de/
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inovex Academy. This thesis was written with the Android embedded development
team, which is a part of the Application Development line of business.

Lectures at symposiums and published works in professional journals also have a high
significance for its public image and are highly encouraged. The Droidcon and the
Mobile Tech Conference are just two examples where inovex employees appear as
regular speakers.



2. Introduction to the Architecture of
Modern Graphic Processors

Today’s Graphics Processing Units (GPUs) differ greatly from early ones. While these
typically only supported accelerated 2D drawing and bitmap blitting, modern GPUs
have a much broader field of application. These early GPUs had hardware support
for basic 2D drawing and animations. In practice this is copying image data from a
bitmap to the framebuffer at a specific location, scale and rotation. Quite surprisingly,
these early GPUs also introduced the hardware cursor to unburden the operating
system and Central Processing Unit (CPU). This meant a huge boost in performance
for this time and made non-text-based games possible.

Modern GPUs still have all these basic 2D hardware features hidden somewhere
on the chip itself (the die) [Gie11a], but their main focus has shifted quite heavily.
Nowadays, GPUs provide accelerated 3D rendering and hardware video decoding.
Recently, General-Purpose computing on Graphics Processing Units (GPGPU) also
got popular. This is possible because a modern GPU is basically a huge number of
parallel floating point processing units bundled together. After all, 3D rendering in
its purest form is only matrix and vector calculus.

These processing units themselves have a Single Instruction Multiple Data (SIMD)
like instruction set which allows vector calculation using very few instruction cycles.
For example, the multiplication of ~a with ~b followed by the addition with ~c

(~a ×~b) + ~c

can be performed in one cycle with the Multiply-Add instruction (MAD) instruction.

3
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Modern CPUs do have comparable features, with the latest addon being the Advanced
Vector Extension (AVX) [Int08] instruction set. Nevertheless, they are still much slower
because of the simple fact that their processor count is much lower.

To fully understand the Android rendering optimizations and pipeline a low-level
understanding of GPUs graphics pipeline is necessary. Because no vendor is very
specific about the internals of their GPU architecture, one has to sift through marketing
presentations, blog posts and white papers to find the relevant pieces of information.
Therefore, most of the information presented here is to be considered a simplification
of what the hardware actually does.

2.1. GPU Vendors

Vendor 2013
Intel 62.0%
AMD 21.9%
Nvidia 16.1%

Table 2.1.: Market Share of desktop GPUs. [Jon14a]

The traditional desktop market is seemingly dominated by Intel, but this is due to
the fact that since 2010 every new Intel CPU has an integrated GPU called Intel HD
Graphics. While these GPUs can handle simple 3D rendering, more complex scenes
and computations still need a discrete GPU. AMD’s market share is influenced by
the fact that Bitcoin miners prefer the AMD Radeon GPUs due to a much faster hash
calculation compared to Nvidia’s GeForce series. [Kha14]

Vendor 2013
Qualcomm 32.3%
Imagination Technologies 37.6%
ARM 18.4%
Vivante 9.8%
Nvidia 1.4%
DMP 0.5%

Table 2.2.: Market Share of mobile GPUs. [Jon14b]
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The mobile market is more diverse and all of the vendors sell their GPUs as Intellectual
Property (IP) Cores, which will be bundled with other components like the CPU and
main memory on a System on a Chip (SOC). Qualcomm’s Adreno, which was originally
bought from AMD, and Imagination Technologie’s PowerVR are the biggest players
in the market to date. Imagination Technologies owes its big market share to Apple,
as all their iOS devices are powered by an PowerVR GPU.

Quallcomm Adreno is currently the only GPU that is being used with Windows Phone
8 devices. Nvidias Tegra is still not very popular, with the newest devices being Nvidia
Shield and Nvidia Note 7 from 2013.

2.2. Overview of the OpenGL Rendering Pipeline

In order to render objects to the screen, the Open Graphics Library (OpenGL) defines
a sequence of steps. This is called the OpenGL Rendering Pipeline (Figure 2.1). This
pipeline is described in a general, low level way here.

Vertex
Shader

Control
Shader Tessellation Evaluation

Shader
Geometry
Shader

Transform
Feedback

ClippingRasterizerFragment
Shader

Pixel
OperationsFramebuffer

Tessellation

Fig. 2.1.: Simplified OpenGL Rendering Pipeline overview. Programmable stages are colored
in blue and optional stages are marked with dashes. (Image based on [Ope13d])

It is important to mention that the hardware implementation can differ greatly and
is not defined by the OpenGL API. Neither is the architecture of the renderer (sec-
tion 2.3) defined, nor whether it implements optimizations such as an Early-Z (see
glossary), Hierarchical Z-Buffer (Hi-Z, see glossary) or Hidden Surface Removal (HSR,
see glossary) pass. But regardless of how the hardware is designed and what kind of
optimizations are used, it has to make sure that the output is exactly the same as the
OpenGL standard dictates.
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2.2.1. Vertex Generation

Graphics APIs like OpenGL or DirectX store their geometry data as a collection
of primitives like triangles or quads. Each of these primitives is defined by a set of
vertices. To render these, the API provides a stream of Vertex Attributes for the
Vertex Generation stage. These attributes typically contain the 3D coordinates (in
model space), surface color and a normal vector. [FH08b, p. 52]

2.2.2. Vertex Processing

After the API submitted its geometry stream to the hardware, the vertex process-
ing stage is executed. For each vertex, which is composed of a series of Vertex
Attributes [Ope13f], the Vertex Shader (VS) is executed. The VS is the first pro-
grammable stage in the rendering pipeline and for every processed input vertex it
must output an vertex.

Typically, this is where the Model-View-Projection Matrix is applied to the vertex,
which transforms its position from model coordinates to screen coordinates. The
color and normal information of the vertex are stored for processing in the Fragment
Shading stage.

2.2.3. Primitive Generation

Since OpenGL version 4.0, the vertices are then passed to the programmable tessel-
lation stage. The purpose of the Tessellation Control Shader (TCS) is to subdivide
primitives into patches, thus increasing the detail of the surface. It is also responsible
for ensuring that these new patches do not have gaps and breaks, which can occur
during subdivision. The Tessellation Evaluation Shader (TES) is responsible for the
calculation of new vertex attributes for the position, color and normal vector of the
newly generated primitives. [Ope13e]

If no tessellation stage is defined, the output from the vertex shader is passed as a
primitive to the next stage.
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2.2.4. Primitive Processing

Each primitive is handed to the Geometry Shader (GS), which outputs zero or more
primitives. The type of input and output primitives does not have to match - the
GS could output a list of triangles generated from a list of points. A typical use-case
for the GS is animating of a particle system, or creating of billboards from a list of
points. [Ope13b]

If no geometry shader is defined, the primitives are directly passed to the next stage.

This is also the stage where Transform Feedback (also called Stream Out) happens:
the pipeline is writes all primitives to the Transform Feedback Buffer, which can
then be cached and rendered again. This is useful when a TCS or GS does heavy
computations, like tessellating a model.

When animating particles, this can also be used to save the current state of all particles
so that the application can read the current positions. In the next frame, this new
state is passed to the GS which in turn updates all particles.

2.2.5. Primitive Assembly and Fragment Generation

All primitives need to broken down into individual points, lines or triangles. The Primi-
tive Assembly converts Quads and Triangle Strips to triangles, which are then passed to
the rasterizer. All primitives can also be discarded with the GL_RASTERIZER_DISCARD

option, which prevents the primitives from being rasterized. This can be used to
debug performance issues in the previous stages, but also to prevent rendering of
primitives generated with Transform Feedback. [Ope13c]

The primitives are handed to the Fragment Generation stage, also called “Rasterizer”,
which converts the primitive to a list of fragments which are passed to the Fragment
Shading stage. Before modern GPUs, rendering was commonly done in software with
a scanline algorithm. This rasterized the geometry line-by-line and than shaded each
pixel [Hec95]. While this was a good approach on general purpose hardware like the
CPU, it does not transform well to a hardware implementation.
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Juan Pineda presents a hardware-friendly approach in [Pin88]. The basic idea is that
the distance to a line can be computed with a 2D dot product. In order to rasterize
a triangle, all candidate pixels (which can be determined with a bounding shape) are
tested against all three triangle edges. If the pixel is inside all edges, the pixel is
marked as inside and is handed to the fragment shading stage.

This can be further optimized and implemented in a parallel fashion. The AMD chip
inside the XBox360 uses 8 × 8 sized tiles, which are rasterized in parallel [AHH08,
p. 862]. Modern GPUs use another, more coarse tile rasterizer which precedes the
main one, in order avoid wasted work on the pixel level. This rasterizer only tells the
fine rasterizer if a tile is potentially covered by a triangle [Gie11d]. High-performance
GPUs employ multiple of these rasterizer combinations.

2.2.6. Fragment Shading

All visible fragments are passed to the Fragment Shader (FS). The main responsibility
of the programmable FS is to write an output color for the processed fragment, but
it can also write output depth and even multiple colors to multiple buffers. The
color can be calculated in a number of ways, incorporating textures, light, global
illumination and other factors. Per-vertex attributes, which are passed from the VS,
are interpolated to the fragment position. Also, the FS has access to the discard

keyword, which can be used to discard a pixel, preventing it from proceeding further
down the pipeline [Ope13a].

Each fragment is independent from another, they can be executed with the FS in
parallel. Modern GPUs have a number of shader cores dedicated to this. Fragments
are bundled as multiple batches and then processed by the shader cores. As these
cores operate in a lockstep fashion, dynamic branches in shaders are expensive. If
only one core takes a branch, all other shader cores need to execute the branch too,
even though they will discard the result anyway [Gie11e].
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2.2.7. Pixel Operations

After each primitive is processed by the FS, they have to be merged into a final image.
This stage is also responsible for blending and pixel testing, which needs to happen in
the same order as the application sends the primitives. Any hardware optimizations
of the drawing order need to be reverted here. Both blending and pixel testing are
relatively cheap computations, but have a high bandwidth requirement as they need
to both read from and write to the render target.

Blending happens in a fixed-function block which is not yet programmable but only
configurable (section 2.7). To blend two pixels together, the current color must first
be read from the render target. According to the configuration, the color is blended
with the process fragment and written back to memory. This is an important step
when rendering translucent surfaces. Pixel tests include stencil, scissor and depth
testing, which can be turned on or off by the graphics API.

2.2.8. Framebuffer

The resulting image is written to a framebuffer, which can in turn be swapped to the
display or used as a new texture. Figure 2.2 shows an example of an operation in the
graphics pipeline.

2.3. Pipeline Variants

Currently, there are two pipeline variants, which are both very old and date back to the
same time periods of early GPUs. Vodoo, Nvidia and ATI started out with a straight-
forward and easy to implement Immediate Mode Renderer (IMR), and PowerVR used
the more complex Tile-Based Renderer (TBR) approach. Nvidia and ATI/AMD still
use the immediate-mode approach and are the main vendors for desktop GPUs. On
mobile chipsets, the tile-based approach is more common, due to power, heat and space
constraints. The Nvidia Tegra is the only mobile chipset that uses immediate-mode
rendering.
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(a) (b) (c) (d) (e)

Fig. 2.2.: Example of an operation trough the Graphics Pipeline [FH08a, p. 21]

a) Six vertices (v0-v5 ) from the Vertex Generation stage, defining two triangles.

b) After Vertex Processing and Primitive Generation the two triangle primitives (p0 and
p1 ) are projected and transformed to screen-space coordinates.

c) Fragment Generation produces two sets of fragments from the triangles.

d) Each fragment is shaded in the Fragment Shading stage, according to the associated
fragment shader.

e) Fragments are combined in the pixel operations stage and the final image is transferred
to the framebuffer. Triangle p1 occludes p0 as it is nearer to the camera.

2.3.1. Immediate Mode Renderer

Traditionally, a IMR renders every polygon without any knowledge of the scene. This
is because old graphic APIs such as OpenGL were originally designed as an immediate
mode API, where every primitive was rendered in order of submission. This has caused
a huge waste of processing power due to Overdraw (see glossary). Newer versions
of OpenGL phased out immediate mode and the OpenGL 4 Core Profile deprecated
all immediate mode functions. Optimizations such as Early-Z help with reducing
Overdraw, but are only as good as the application geometry ordering. Figure 2.3 gives
a simplified overview of the pipeline of a traditional IMR.

Vertex
Processing

Primitive
Rasterizer

Early
Visibility

Fragment
Shading

Late
Visibility

Pixel
Operations

Geometry
Data

Texture
Data

Depth
Buffer

Frame
Buffer

M
em

ory

Fig. 2.3.: Simplified Immediate Mode Renderer Pipeline (Image based on [Gan13, p. 5])
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Despite the name, tiling is not absent from IMRs. Modern GPUs use multiple raster-
izers, where Nvidia uses up to four [Pur10, p. 8] and AMD up to two [Fow10, p. 5].
With Hi-Z whole tiles can be rejected before they arrive in the fragment shading stage
of the pipeline. Finally, fragment shaders are also working in so called shading blocks,
which are processed in parallel [Fat10, p. 27]. It is to be assumed that these shading
blocks are orderded in a specific way to maximize memory page coherency [Gie11f].

2.3.2. Tiling-Based Renderer

Mobile GPUs must balance performance and power consumption, which is why they
will never be as powerful as desktop GPUs. One major power consumer is the memory,
as it is usually shared with the CPU. The memory also has a high latency as it is
not located on the chip itself but needs to be addressed over a slow memory bus,
which is shared with other peripherals such as the camera or wireless connectivity.
Power consumption and latency also increases with the length of this memory bus.
Especially in the pixel operations stage, the renderer needs to read from and write to
the framebuffer. For example when using transparency, the old pixel value needs to
be fetched from the framebuffer in order to be blended with the partially transparent
pixel, and only then can the resulting pixel be written back to the framebuffer.

To improve performance and reduce power usage, most mobile GPUs use a tile-based
rendering approach, with the famous exception of the Nvidia Tegra, which is still an
IMR. These TBRs move the frame and depth buffer to high speed on-chip memory,
which is much closer to the GPU and therefore much less power is needed. As the
on-chip memory takes a lot of space on the chip itself, it cannot be the full size of
the framebuffer and must be smaller. This tile buffer is usually only a few pixels
big [Mer12].

In order to render a scene, the TBR first splits the scene into multiple equally-sized
tiles and saves them to memory (called the “frame data”). The OpenGL API is
designed as an immediate-mode renderer, it specifies primitives to be drawn with the
current state. So for this tile-based approach to work, the GPU needs knowledge
of all objects to be drawn in the current frame. This is also the reason why calling



2.3. Pipeline Variants 12

Vertex
Processing Tiling Primitive

Rasterizer
Visibility
Test

Fragment
Shading

Pixel
Operations

Depth
Buffer Tile Buffer

Geometry
Data

Texture
Data

Frame
Buffer

Frame
Data

O
n-Chip

M
em

ory

Fig. 2.4.: Simplified Tiling-Based Renderer Pipeline (Image based on [Gan13, p. 7])

glClear() seems to take much longer than actual draw calls, because only when the
driver can be certain that a frame is complete it can issue the rendering commands
to the hardware. The GPU can now render each of these tiles, one at a time, into
the on-chip tile buffer. As the tiles are completely independent from each other, this
operation scales almost linearly and GPUs can employ multiple renderers to improve
performance. After a tile is rendered completely, the contents of the color buffer are
copied back to the framebuffer. Figure 2.4 gives an overview of the pipeline of a TBR.
In addition to the tile buffer, the visibility test on a TBR also employs an on-chip
depth buffer [Gan13].

As seen in the effort of reverse engineering of the vendor driver and implementation of
a free driver for the Adreno chipset family called freedreno, the tiling effort is usually
not handled in hardware but in software in the driver itself [Fre13a].

The term “Tiling-Based Deferred Renderer” (TBDR) is coined by the Imagination
Technologies PowerVR GPU Series. This is mostly a marketing strategy, as it is
basically a regular TBR with added HSR. This is basically a per-tile Z-Buffer, which
is located on very fast memory. The geometry is rasterized per tile (without shading)
and written to this Z-Buffer. It is used to discard pixels that are occluded. Since the
PowerVR MBX Series [Ima09, pp. 6-7], rasterization of tiles only uses one processing
cycle per processed line. On a 32×32 tile buffer such a line is 32 pixels wide. This has
the added benefit of free horizontal and vertical clipping, as HSR is only performed
on on-screen pixels.
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2.4. Driver and Command Processor

The GPU driver implements the graphics API and serves as an abstraction layer for
the hardware. The driver translates the API calls into a stream of commands which
is sent to the GPUs command processor. These commands are stored in a ring buffer,
from which the command processor is reading. They usually set registers or trigger
rendering commands. Some modern GPUs have separate command processors for 2D
and 3D rendering. Changing the rendering state of the GPU is tricky. On nearly
every state change, the GPU is forced to completely flush all work that is still being
processed in the pipeline, which can mean a major slowdown of the rendering. For
example, when changing the current texture or shader, the driver needs to wait for
all current processing work to complete in order to not interfere with the rendering
result.

Examples of such commands can be seen in the free driver for the Qualcomm Adreno,
freedreno [Fre13b].

2.5. Memory Architecture and Limitations

Modern GPUs employ a different memory subsystem than modern desktop CPUs.
The memory architecture of a GPU favors bandwidth over latency, which means really
fast transfers with high waiting periods. This trade-off is a result of GPUs dealing
with increasingly higher resolutions of textures and displays. To mitigate the high
latency, modern GPUs employ a series of caches. The high bandwidth also comes
with a big hit in power draw of the memory bus.

A first-generation Intel Core i7 has a peak bandwidth of almost 20 GB/s with a
memory latency of 47 ns. Dividing this latency by the clock rate of 2.93 GHz results
in a cache miss penalty of about 140 cycles. The Geforce GTX 480 on the other hand
has a peak bandwidth of 180 GB/s, a shader clock rate of 1.5 GHz and a memory
latency of 400 to 800 cycles [Ren11, p. 11]. This is a bit more than 4× the average
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memory latency with almost half the clock rate of an Core i7. The resulting cache
miss penalty is therefore many times higher [Gie11a].

Many mobile devices and some low-cost desktop and notebook devices feature so
called unified or shared memory. In this scenario, the GPU has no discrete memory
to work with but is allocated a part of the system memory. The rest of the system
is therefore sharing the already small, available memory bandwidth with the GPU.
This is more noticeable on mobile devices. The Nexus 7 (2013) has a peak bandwidth
of 13 GBit/s with a resolution of 1920 × 1200 pixels. These pixels are stored inside
the framebuffer in a RGB565 configuration (16 bit per pixel). This alone results in a
2.2 GBit/s bandwidth need to achieve 60 frames per seconds if every pixel is rendered
once. Overdraw, texture access and render targets are also putting more stress on the
memory bus.

2.6. Shader Architecture and Limitations

The first programmable hardware stages or shader units used a assembly-like program-
ming language. The vertex and fragment shader used different hardware architectures
and therefore different subsets of said programming language. Each hardware archi-
tecture had different performance trade-offs, with vertex and texture caching as an
example.

After the introduction of high-level shader languages like the OpenGL Shading Lan-
guage (GLSL) or the DirectX counterpart High-Level Shading Language (HLSL),
which was developed alongside with Nvidias C for Graphics (Cg), the unified shader
model was introduced. This unified the vertex and fragment shader hardware designs
into one design, which is now used for both shader types.

The shader hardware consists basically of fast Arithmetic Logic Units (ALU) built
around a Floating Multiply-Accumulate (FMAC) unit. There is also special hardware
for common used mathematical functions (for example the square root, trigonometric
and logarithmic functions). The shader units are optimized for high throughput and
are running a high number of threads, which run the same shader code in parallel. Due
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to the architecture the hardware is not particularly good at branching code, especially
if these branches are not coherent. In some cases its even possible that a batch of
threads execute unnecessary branches and discard the results, only because one thread
needs to execute the branch.

With the unified shader model, vertex, fragment and other shaders have virtually no
hardware differences, but the used shader language may impose artificial limitations
which are enforced in software. AMD is using a SIMD architecture that is wide enough
for a four component vector, which is implied by most shading languages. Nvidia uses
scalar instructions [Gie11b].

Another reason to run the shader in batches is texture access. Memory access is
optimized for high bandwidth with the drawback of high latency (section 2.5). If a
shader asks for a texture sample, it does so in bigger blocks. Texture sample requests
of 16 to 64 pixels per thread are now being used by the major vendors. While waiting
for the hardware to fetch the texture samples, the shader unit will pause execution
and switch to another shader batch if there is one available. Most vendors also employ
a two-level texture cache to mitigate the huge memory latency and exploit the fact
that most texture access is bilinearly sampled and uses four texture pixels. Every
texture cache hit is a huge performance improvement because the hardware does not
have to fetch a new texture block [Gie11c].

2.7. Render Output Units

The Render Output Unit (ROP), also called Raster Operations Pipeline on occasion,
is the final step in the rendering process. The name is purely historical, as it originates
from early 2D hardware accelerators, in which their main purpose was fast bitmap
blitting. It hat three inputs: the source image, a binary image mask and the destination
coordinates. The ROP first blitted the mask to the framebuffer at the destination
with an AND operation. Finally, the source image would be copied to the destination
with an OR operation. Nowadays, the binary image mask is replaced with an alpha
value, and the bitwise operations with a configurable blending function [Gie11f].
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On a TBR, blending and other pixel operations are very fast, because the required
buffers are also on the on-chip memory and only need to be flushed to the framebuffer
when all operations are completed.



3. Android Graphics Architecture

Traditionally, all android views were drawn to a bitmap in software using a software
renderer called Skia. These bitmaps were uploaded to the GPU and all views were
composed in hardware since before the first Android release. This allowed effects
like scrolling, pop-ups and fading to be fast, as these frequently used effects are
implemented in the compositing stage of the rendering pipeline and happened in
hardware [Hac11].

Nevertheless, compared to an iOS device, Android felt much slower. This was due
to the fact that usually the default browsers of both platforms were used to compare
performance. The iOS browser uses a tiled approach, which renders the webpage into
smaller tiles. This makes zooming and panning much smoother. Android rendered the
page directly to the screen, which was done to eliminate artifacts when zooming. But
this made rendering and zooming more complex and therefore slower. As of Android
3.0 the stock browser also uses a tiled rendering approach.

Starting with Android 3.0 Honeycomb (API Level 11), hardware accelerated UI render-
ing was introduced. With the help of OpenGL, Android could now renderer frequently
used canvas operations with the GPU. This still needed manual enabling in the
AndroidManifest file and not all canvas operations were supported, but the founda-
tions for a faster rendering system were laid. Unsupported operations included the
canvas methods drawPicture, drawTextOnPath and drawVertices. With Android
4.0 Ice Cream Sandwich (ICS, API Level 14) the opt-in hardware acceleration became
opt-out, an application targeted for ICS or later now needs to specifically disable the
acceleration via the manifest [Hac11]. Using a unsupported canvas operation will turn
the hardware acceleration off. Even with Android 4.4 KitKat (API Level 19) not all
canvas operations are supported [And13a].

17
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Using OpenGL to render the UI is merely a trade-off between rendering speed and
memory usage. Currently, only initializing an OpenGL context in a process can cost
up to 8 MB memory usage. This can be a huge hit to the memory footprint of the
application. Therefore, the Android engineers decided to specifically disable hardware
acceleration on most system processes such as the navigation bar and status bar.

To reduce stress on the GPU and memory system only invalidated parts of the UI
are redrawn. This is implemented with the use of clipping rectangles. The use of
hardware overlays further reduces bandwidth use, as they do not have to composited
on the screen. If the number of available overlays are not sufficient, framebuffer objects
are used which are essentially textures. These have to be composited on the screen,
meaning a copy of the contents to the framebuffer.

3.1. Hardware Accelerated UI Rendering

As the Android rendering pipeline has grown for several years now, the codebase
itself is very big and is not explained in depth here. Nevertheless, all critical code
paths in all major components are explained that will be used when Android renders
a standard application. Rendering is only a small part of the applications execution
and only possible in conjunction with the window and input systems, which are not
explained here.

3.1.1. Asset Atlas Texture

The Android start-up process Zygote (see glossary) always keeps a number of assets
preloaded which are shared with all processes. These assets are containing frequently
used NinePatches (see glossary) and images for the standard framework widgets. But
for every asset used by a process, there exists a GPU copy as a texture. Starting
with Android 4.4 KitKat, these frequently used assets are packed into a texture atlas,
uploaded to the GPU and shared between all processes at system start.

Figure 3.1 shows an asset atlas texture generated on a Nexus 7, containing all frequently
used framework widget assets. It is important to note, that the NinePatches in the
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asset texture do not feature the typical borders which indicate the layout and padding
areas. The original asset file is still used on system start to parse these areas, but it
is not used for rendering.

Fig. 3.1.: A sample texture atlas generated on
a Nexus 7 [And13d]

The SystemServer, started by Zygote
at boot-time, initializes and starts the
AssetAtlasService1. On the first boot
or after a system update, this service
brute-forces trough all possible atlas
configurations and looks for the best
one, which maximizes the number of
assets packed and minimizes the size
of the texture. This configuration is
written to /data/system/framework_

atlas.config and contains the chosen
algorithm, dimensions, whether rota-
tions are allowed and whether padding
has been added. All used assets are first
sorted by width and height. This continues until all textures have been packed into
the atlas.

The Atlas2 is responsible for packing the assets. It starts with an empty atlas texture,
divided into a single cell. After placing the first asset, the remaining space is divided
into two new rectangular cells. Depending on the algorithm used, this split can either
be horizontal or vertical. The next asset texture is added in the first cell that is large
enough to fit. This now occupied cell will be split again and the next asset is processed.
The AssetAtlasService is using multiple threads for this process. The algorithm
producing the best fitting atlas will then be saved to the configuration file for future
usage. The internal implementation is based on a linked list for performance reasons,
but the algorithm itself is best represented as a simple binary tree.

1File location: frameworks/base/services/java/com/android/server/AssetAtlasService.java
2File location: frameworks/base/graphics/java/android/graphics/Atlas.java

/data/system/framework_atlas.config
/data/system/framework_atlas.config
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When booting the system, the atlas configuration file is read from disk and the Atlas

will recompute the asset atlas texture with the supplied parameters. A RGBA8888
graphic buffer is allocated as the asset atlas texture and all assets are rendered onto
it via the use of a temporary Skia bitmap. This asset atlas texture is valid for the
lifetime of the AssetAtlasService, only being deallocated when the system itself is
shutting down.

When a new process is started, its HardwareRenderer queries the AssetAtlasService

for this texture. Every time the renderer needs to draw a bitmap it checks the atlas first.
When the atlas contains the requested bitmap, it will be used in rendering [And13d].

3.1.2. Display Lists

In the world of the android graphics pipeline, a display list is a sequence of graphics
commands needed to be executed to render a specific view. These commands are a
mixture of statements that can be directly mapped to OpenGL commands, such as
translating and setting up clipping rectangles, and more complex commands such as
DrawText and DrawPatch. These need a more complex set of OpenGL commands.
Listing 3.1 shows an example of a basic display list which renders a button, located
at the origin pxy = (0, 0). The parent of the button is responsible for translating this
origin to its actual position inside the view hierarchy, and then executing the buttons
display list. In the example, the first step is to save the current translation matrix
to the stack, so that it can be later restored. It then proceeds to draw the buttons
NinePatch, followed by another save command. This is necessary because for the text
to be drawn, a clipping rectangle is set up to the region that is affected by the text,
and the origin is translated to the text position. The text is drawn and the original
translation matrix is restored from stack.



3.1. Hardware Accelerated UI Rendering 21

Save 3
DrawPatch
Save 3
ClipRect 20.00, 4.00, 99.00, 44.00, 1
Translate 20.00, 12.00
DrawText 9, 18, 9, 0.00, 19.00, 0x17e898
Restore
RestoreToCount 0

Listing 3.1: Example display list for rendering a Button [GH11]

Every view generates its own display list, recursively descending the view hierarchy.
If a view gets invalidated due to user input events or animations, the affected display
lists will be rebuilt and eventually redrawn. The root view is responsible for triggering
this rebuilding of the display lists after an invalidation.

Replaying an display list is much more efficient than executing the view’s onDraw()

method, as the display list lives on the native C++ side of the pipeline and is basically
just a huge sequence of drawing operations. The display lists are built around a canvas
(GLES20RecordingCanvas, subsection 3.2.8), which does not execute the drawing
operations but records them for later playback.

Fig. 3.2.: An example view hierarchy and the corresponding display list hierarchy [GH11]

For example, if View B (Figure 3.2) gets invalidated, only the DisplayList B needs
to be rebuild. This also means that only the display region that is affected by this
display list needs to be redrawn. Internally, this is done by setting up a clipping
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rectangle and redrawing all display list that could possibly affect this rectangle. It is
possible for the GPU to reject pixels that are not inside the clipping region.

Android 4.3 introduced Display List Properties, which are used to prevent a com-
plete display list rebuild on specific invalidation changes. Changing a views position,
rotation, scale or transparency now results in a optimal invalidation, as the display
list does not need to be rebuild but only redrawn with the changed properties. The
Android documentation claims that no redrawing of the targeted view is needed3, but
that only applies to execution to the views onDraw() method. The display list still
has to be replayed.

The display list itself is implemented in DisplayList4, and the GLES20DisplayList5

is only a small abstraction layer build on top of the native display list and an instance of
a GLES20RecordingCanvas (subsection 3.2.8). This native display list in turn is only a
small wrapper around a DisplayListRenderer (subsection 3.2.11) and is responsible
for managing the display list properties. A transformation matrix is calculated from
these properties, which will be applied before the display list is replayed. Replaying
a display list is as simple as iterating over all display list operations and calling the
replay() method on it (Listing 3.2).

void DisplayList::replay(...) {
for (unsigned int i = 0; i < displayListOps.size(); i++) {

DisplayListOp *op = displayListOps[i];
op->replay(...);

}
}

Listing 3.2: Replaying a display list by iterating over all operations and calling replay()

3.1.3. Merging of Operations

Before Android 4.3, rendering operations of the UI were executed in the same order
the UI elements are added to the view hierarchy and therefore added to the resulting

3http://developer.android.com/guide/topics/graphics/hardware-accel.html
4File location: framework/base/libs/hwui/DisplayList.cpp
5File location: framework/base/core/java/android/view/GLES20DisplayList.java

http://developer.android.com/guide/topics/graphics/hardware-accel.html
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display list. This can result in the worst case scenario for GPUs, as they must switch
state for every element. For example, when drawing two buttons, the GPU needs to
draw the NinePatch and text for the first button, and then the same for the second
button, resulting in at least 3 state changes (section 2.4).

Fig. 3.3.: Example Activity with overlapping
text elements and one drawable.

With the introduction of reordering,
Android can now minimize these state
changes by ordering all drawing oper-
ations by their type. As seen in Fig-
ure 3.3, a naive approach to reordering
is not sufficient. Drawing all text el-
ements and then the bitmap (or the
other way around) does not result in
the same final image as it would with-
out reordering.

In order to correctly render the Activity in Figure 3.3, text elements A and B have to
be drawn first, followed by the bitmap C, followed by the text element D. The first
two text elements can be merged into one operation, but the text element D cannot,
as it would be overlapped by bitmap C. Regardless of the merging, the FontRenderer

will be further optimizing this case (subsection 3.2.14).

To further reduce the drawing time needed for a view, most operations can be
merged after they have been reordered. Listing 3.3 shows a simplified algorithm
Android uses to reorder and merge drawing operations. This happens in the so-called
DeferredDisplayList6, because the execution of the drawing operations does not
happen in order, but is deferred until all operations have been analyzed, reordered
and merged. Because every display list operation is responsible for drawing itself,
an operation that supports the merging of multiple operations with the same type
must be able to draw multiple, different operations in one call. Not every operation
is capable of merging, so some can only be reordered.

To merge operations in an application’s DisplayList each operation is added to
the deferred display list by calling addDrawOp(DrawOp). The drawing operation is

6File location: frameworks/base/libs/hwui/DeferredDisplayList.cpp
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Fig. 3.4.: The OpenGLRenderer creates a DeferredDisplayList and the original
DisplayList is adding every operation to the new deferred one. The deferred
display list then being flushed.

asked to supply the batchId, which indicates the type of the operation, and the
mergeId by calling DrawOp.onDefer(...) (subsection 3.2.13). Possible batchIds
include OpBatch_Patch for a NinePatch and OpBatch_Text for a normal text element,
which are defined as an enum (enum OpBatchId7). The mergeId is determined by
each DrawOp itself, and is used to decide if two operations of the same DrawOp type can
be merged. For a NinePatch, the mergeId is a pointer to the asset atlas (or bitmap),
for a text element it is the paint color. Multiple drawables from the asset atlas can
potentially be merged into one batch, resulting in a greatly reduced rendering time.

After the batchId and mergeId of an operation are determined, it will be added to
the last batch if it is not mergeable. If no batch is already available, a new batch will
be created. The more likely case is that the operation is mergeable. To keep track
of all recently merged batches, a hashmap for each batchId is used which is called
MergeBatches in the simplified algorithm. Using one hashmap for each batch avoids
the need to resolve collisions with the mergeId.

If the current operation can be merged with another operation of the same mergeId

and batchId, the operation is added to the existing batch and the next operation
can be added. But if it cannot be merged due to different states, drawing flags or

7File location: frameworks/base/libs/hwui/DeferredDisplayList.h
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bounding boxes, the algorithm needs to insert a new merging batch. For this to
happen, the position inside the list of all batches (Batches) needs to be found. In the
best case, it would find a batch that shares the same state with the current drawing
operation. But it is also essential that the operation does not intersect with any other
batches in the process of finding a correct spot. Therefore, the list of all batches is
iterated over in reverse order to find a good position and to check for intersections
with other elements. In case of an intersection, the operation cannot be merged and
a new DrawBatch is created and inserted into the MergeBatches hashmap. The new
batch is added to Batches at the position found earlier. In any case, the operation is
added to the current batch, which can be a new or an existing batch.

The actual implementation is more complex than the simplified version presented
here. There are a few optimizations worth being mentioned. The algorithm is tries to
avoid Overdraw by removing occluded drawing operations, and also tries to to reorder
non-mergeable operations to avoid GPU state changes. These optimizations are not
shown by Listing 3.3.
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vector<DrawBatch> batches;
Hashmap<MergeId, DrawBatch*> mergingBatches[BatchTypeCount];

void DeferredDisplayList::addDrawOp(DrawOp op):
DeferInfo info;
/* DrawOp fills DeferInfo with its mergeId and batchId */
op.onDefer(info);

if(/* op is not mergeable */):
/* Add Op to last added Batch with same batchId, if first

op then create a new Batch */
return;

DrawBatch batch = NULL;
if(batches.isEmpty() == false):

batch = mergingBatches[info.batchId].get(info.mergeId);
if(batch != NULL && /* Op can merge with batch */):

batch.add(op);
mergingBatches[info.batchId].put(info.mergeId, batch);
return;

/* Op can not merge with batch due to different states,
flags or bounds */

int newBatchIndex = batches.size();
for(overBatch in batches.reverse()):

if (overBatch == batch):
/* No intersection as we found our own batch */
break;

if(overBatch.batchId == info.batchId):
/* Save position of similar batches to insert

after (reordering) */
newBatchIndex == iterationIndex;

if(overBatch.intersects(localBounds)):
/* We can not merge due to intersection */
batch = NULL
break;

if(batch == NULL):
/* Create new Batch and add to mergingBatches */
batch = new DrawBatch(...);
mergingBatches[deferInfo.batchId].put(info.mergeId, batch);
batches.insertAt(newBatchIndex, batch);

batch.add(op);

Listing 3.3: Simplified merging and reordering algorithm of the Android drawing operations
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3.1.4. Software VSync

Vertical Synchronization (VSync, see glossary) was always a component of Android to
prevent the screen from tearing. But in Android 4.2 and earlier versions, the hardware
VSync events did not get used in Android. Android would start to render a frame
when the system got around to do it, triggered by user input or view invalidation.

Starting with Android 4.3, these VSync events are now used for the drawing system
as well. By starting to draw a frame right after the display contents got refreshed
(the VSync), Android has the maximum amount of time to finish the frame before
the next refresh. If the display is refreshing at 60 Hz, Android has 16 ms to process
user input and issue draw commands.

There are two kind of VSync events in the Android system. The HWComposer is
responsible for reporting the hardware VSync events which come from the display
itself. These hardware events are converted to a software event by the SurfaceFlinger

and distributed via the Binder to the Choreographer [And13e].

3.1.5. Triple Buffering

Fig. 3.5.: Rendering with VSync can result in missed frames if the next VSync event is
missed [HG12]

By default, Android is a double buffered system. One front buffer containing the
currently visible screen contents, and one back buffer, containing the next frame’s
screen contents. On the next VSync event, these two buffers get swapped, which is
called page flipping.
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To render a full scene to the buffer, the CPU first needs to generate the display list
and replay it. The GPU renders the elements from the display list to the buffer.
Depending on the complexity of the view, the generation of the display list and the
rendering of the display list can take more than one frame, resulting in a dropped
frame (Figure 3.5). As the system missed the VSync event after the delivering of buffer
B, it can only start to process the next buffer at the following VSync event. Therefore
every second frame is missing and the user experience is not smooth anymore.

Fig. 3.6.: If a missed frame is detected, a third buffer is used for the rendering of the
application [HG12]

If the Android system notices such a frame drop, it automatically sets the application
to use a third buffer (Figure 3.6). While one buffer is displayed and the GPU is
rendering to the second buffer, the CPU can start on preparing the next frame by
working on the third buffer. Triple Buffering is therefore a trade-off between input
latency and rendering latency. Android is willing to introduce an input latency of at
least one additional frame to improve the rendering latency, which will result in an
all-around smoother user experience.

3.2. Rendering an example application

Using an example application, the Android UI rendering pipeline is explored in depth,
starting with the public Java API, going to native C++ Code and finally looking at
the raw OpenGL drawing operations. The activity (Figure 3.7) consists of a simple
RelativeLayout, an ActionBar with the application icon and title and a Button

which reads “Hello world!”.
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Fig. 3.7.: Example Activity used to trace
through the graphics architecture

The RelativeLayout consists of a simple
color-gradient background. More com-
plex, the action bar is composed of the
background, which is a gradient com-
bined with a bitmap, the “One Button”
text element and the application icon,
which is also a bitmap. A NinePatch is
used as the background for the button,
and the string “Hello World!” is drawn
on top of it. The navigation bar and
status bar at the top and bottom of the
screen are not part of the applications activity and therefore will not be examined.

3.2.1. Activity Start

The application is launched by clicking on the application icon in the launcher. The
launcher will call startActivity(...) with an intent to launch the application. Even-
tually, the ActivityManagerService will process this intent and start the new ap-
plication with startViaZygote(...), which tells Zygote to fork a new process and
returns the new process id [Kar10]. The ActivityManagerService is bound to the
new application and app specific classes are loaded into memory. It will then launch
the final applications code and calls the onCreate() and onStart() methods. The
application is now fully started.

3.2.2. Root View

Every Android activity has a implicit root view at the top of the view hierarchy,
containing exactly one child view. This child is the first real view of the application
defined by the application developer. The root view is responsible for scheduling and
executing multiple operations such as drawing, measuring, layouting and invalidating
views.
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Fig. 3.8.: View hierachy of the example appli-
cation

Figure 3.8 shows the view hierarchy as
displayed by the Android debug monitor.
The first FrameLayout is generated by
the activity to host the action bar. The
RelativeLayout is hosting the button
of the example view.

The root view of an application is implemented in ViewRootImpl.java8. Started by
the WindowManager, it holds a reference to the first view of the application in mView

which is set in setView(View, ...). This method also tries to enable hardware
acceleration, which depends on the application flags and whether the application is
a persistent process, like the navigation or notification bar. Hardware acceleration
is never enabled for system processes, and disabled for persistent processes on low-
end devices. This is decided in enableHardwareAcceleration(...). If hardware
acceleration is to be used, a new HardwareRenderer (subsection 3.2.3) is created. In
the example application, this is the case. Also, the root view creates a new Surface

(subsection 3.2.9) to draw upon. This surface is initially not-valid, but will be made
valid by the SurfaceFlinger once resources are available and allocated.

If the member view is invalidated, resized or animated, the view will call the root views
invalidateChildInParent(...) method (Listing 3.4). The invalidated rectangle is
united with the local dirty rectangle, resulting in a new rectangle which covers the
new and all previously invalidated rectangles. The scheduleTraversal() method
then attaches the root view to the software VSync events via the Choreographer

(Figure 3.9).

Invalidation of a rectangle can happen, for example, on an input event. If the user
pushes the button of the example view, the button will be invalidated, as it now needs
to be redrawn in the pushed state. This will invalidate part of the parent view of the
button, cascading all the way up to the root view.

8File location: frameworks/base/core/java/android/view/ViewRootImpl.java
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Fig. 3.9.: When the View gets invalidated, it will call the ViewRoot, which in turn will
schedule a traversal using the Choreographer. At the next VSync event, the
choreographer calls performTraversals() on the ViewRoot.

public ViewParent invalidateChildInParent(int[] location,
Rect dirty) {

// ...
// Add the new dirty rect to the current one
mDirty.union(dirty.left, dirty.top,

dirty.right, dirty.bottom);
// ...
if (!mWillDrawSoon /* ... */) {

scheduleTraversals();
}
return null;

}

Listing 3.4: Invalidation of a view will cause its invalidation rectangle to be added to the
root views dirty rectangle, and a new traversal is scheduled.

On the next VSync event happening right after the display contents got refreshed, the
Choreographer calls the root views performTraversals(...) method. This method
does all the heavy lifting regarding the applications view model. In the step called
“measure and layout” it handles fading in and out the application when opening and
closing. Resizing, for example on orientation changes, and other layout changes are
also handled. The window manager is notified of this change in window dimensions
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in relayoutWindow(), as is the HardwareRenderer, which needs to reinitialize the
underlying canvas.

When the view needs to be refreshed, draw(View) gets called inside the traversal. This
is not the onDraw(...) method which can be overloaded, but an internal method.
The dirty regions which need to be redrawn are calculated and the HardwareRenderer

gets told to draw a specific region of the member view. If hardware acceleration is
disabled, the view will get redrawn using the old software rendering path.

3.2.3. HardwareRenderer

The HardwareRenderer9 is an interface to render a view hierarchy to a canvas. In
order to draw a view, it must create a DisplayList containing all drawing operations
necessary to draw itself and all of its children. This display list is being handed to
the underlying canvas, which will in turn draw the DisplayList itself. The hardware
renderer is also responsible for managing the OpenGL context.

On Android 4.4, the hardware renderer instance created by the root view is always
a GL20Renderer (subsection 3.2.8). On initialization in initializeIfNeeded(), a
GLES20Canvas is being generated. This canvas is the main canvas for the application,
on which all drawing will happen. It will later be displayed on the screen. The shared
asset atlas will be fetched in initAtlas() and the reference to it saved for rendering.

When the draw(View, ...) method is being called by the root view, the view is
asked to build and return the required display list via View.getDisplayList(), and
this display list is drawn on the internal canvas via canvas.drawDisplayList(...)

(Figure 3.10). After drawing the display list, the eglSwapBuffers(...) command is
called. This command is implemented in the custom Android EGL implementation
called AGL, which is the layer between the rendering API and the underlaying window-
ing system. It handles surface and buffer binding, context management and rendering
synchronization. The command queues the current buffer into the buffer rotation, and
dequeues a used buffer out of the rotation for the next drawing operations. The new
contents will be then visible on screen with the next VSync event.

9File location: frameworks/base/core/java/android/view/HardwareRenderer.java
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Fig. 3.10.: The HardwareRenderer draws a view by fetching the corresponding display list
and drawing it to the internal canvas. Finally eglSwapBuffer() is called.

The overdraw counter is also drawn by the HardwareRenderer in the debugOverdraw()

method. This counter measures the amount of overdraw per application. A new
GLES20Canvas is created and the special debug flag setCountOverdrawEnabled(...)

is set, which counts the ratio of overdrawn pixel. The internal display list is ren-
dered on this invisible canvas and the number of overdraws is being written to the
visible canvas, on top of the active view, in drawOverdrawCounter(...). Overlaying
overdrawn areas with colors is handled by the OpenGLRenderer.

In order to debug performance, the HardwareRenderer can keep record of the time
per frame over the last 128 frames. These measurements can be visualized on-screen
or dumped to the console. Section 3.3 is using this data for Overdraw analysis.

3.2.4. View, ViewGroup and Layouts

Every view has a reference to its parent. The first view inside the view hierarchy,
which the root view references, has this root view as a parent. The View10 serves as a
base class for almost every visible element and widget of the Android framework. It
occupies a rectangular space on the screen and does not support any children [And13f].
The subclass ViewGroup11 supports multiple children and serves as a base class for
all Android layouts.

10File location: frameworks/base/core/java/android/view/View.java
11File location: frameworks/base/core/java/android/view/ViewGroup.java
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With currently almost 20 000 lines of code, the View is one of the bigger classes inside
the Android framework. This comes as no surprise, as it is the building block for
every widget and application. It handles the keyboard, trackball and touch events, as
well as scrolling, scrollbars, layouting and measuring. Focus and visibility events are
also processed [And13f].

Fig. 3.11.: The HardwareRenderer requests a display list from a view. The view will create
a new display list and calls the start(w, h) method to get a reference to a
canvas, on which the view can draw itself. The display list is then returned.

Drawing events are also processed by the View. The HardwareRenderer will eventually
call the View.getDisplayList(...) method. If this is the first call made to this
method, the view will create a new internal display list (Figure 3.11). This display
list is used for the rest of the views lifetime.

Listing 3.5 shows the critical path on how the view hierarchy is drawn by calling
getDisplayList(...) on the first child in the view hierarchy. The display list is
asked to supply a canvas with the view’s size. If the view is not using the default
layer type (LAYER_TYPE_NONE) but a hardware or a software layer, display lists are
not used. These hard- and software layers can be used for special effects like blending
and color filters. The hardware layer will render a View to an OpenGL texture, on
which effects can be used more easily.
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The example application does not use a layer, and the canvas returned by the display
list is a GLES20RecordingCanvas and will be used by all views in the viewing hier-
archy to draw upon. The canvas is translated by the the scrolling offset, and then
handed to the draw(...) method. In the rare case that the view does not have a
background, it does not have to draw itself but only the children, if any, by calling
dispatchDraw(...).

After drawing, the display list is cached and then returned to the hardware renderer.
The cached version is used in subsequent draw calls, in case the view has not changed
but only the children.

private DisplayList getDisplayList(DisplayList displayList,
boolean isLayer) {

// ...
HardwareCanvas canvas = displayList.start(width, height);
if (!isLayer && layerType != LAYER_TYPE_NONE) {

// Layers don’t get drawn via a display list
} else {

computeScroll();
canvas.translate(-mScrollX, -mScrollY);

// Fast path for layouts with no backgrounds
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {

dispatchDraw(canvas);
if (mOverlay != null && !mOverlay.isEmpty()) {

mOverlay.getOverlayView().draw(canvas);
}

} else {
draw(canvas);

}
}
// ...
return displayList;

}

Listing 3.5: Calling getDisplayList(...) on a view will cause it to draw itself to the
supplied canvas, which records the drawing operations as a display list. Children
will be drawn by the ViewGroups.draw(...) method.

In case draw(canvas) gets called, the view will draw the background to the can-
vas and execute the application specific onDraw() code. Followed by a call to the
dispatchDraw(canvas) method, the children of the view will be drawn. It will then
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add fading edges if necessary and draws the views decorations (like the scrollbar, for
instance).

Fig. 3.12.: In order to draw itself, a View will first draw the background. It then calls the
onDraw() method which may contains special code written by the applications
developer. The view proceeds to draw all of its children.

The view base class only implements an empty dispatchDraw(...) method as it
does not support any children. The sub-class ViewGroup implements this method
(Listing 3.6). Among other things, it tells all of its children to draw itself to the
supplied canvas. The children could be anything, from a normal button to another
layout, which itself includes another set of children.
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protected void dispatchDraw(Canvas canvas) {
// ...
final int count = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < count; i++) {

final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE

|| child.getAnimation() != null) {
child.draw(canvas, this, drawingTime);

}
}
// ...

}

Listing 3.6: dispatchDraw(Canvas) is drawing all children of the ViewGroup and by iterat-
ing over them and calling the draw(Canvas, ...) method.

3.2.5. TextView

The TextView is a specialized view for basically everything that needs to draw text
and a NinePatch. For example, the Android Checkbox, Radiobox and Button are
all based on it. To correctly position its text, background and NinePatch, it uses an
internal layout.

Implemented in TextView.java12, this view has almost 10 000 lines of code and
handles all conceivable corner cases, including support for Right-To-Left and non-latin
languages, marquees and text styling. It also handles text editing, such as normal
input but also the copy and paste functionality via a context menu.

In its onDraw(Canvas) method, it first draws the background via the onDraw(Canvas)

method of its base class. It then proceeds to position the internal layout and draw it
on the supplied canvas.

12File location: frameworks/base/core/java/android/widget/TextView.java
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3.2.6. Button

The Button13 is only a text view with a customized background, the Java class extends
TextView. This background is set in the constructor of the button, and there is nothing
else that distinguishes it from a normal text view apart from a different class name.

The TextView will draw the various states of the button via the customized background
drawable, changing its appearance based on the state of the background selector
drawable. This is also true for the normal background of a TextView, which will look
differently when focused.

3.2.7. Choreographer

With the Choreographer14, Android apps have a way to connect to the VSync signal
from the display subsystem by posting a callback which gets called after the next
VSync took place, giving the application the maximum amount of time between two
frames to draw itself. For an application developer, there is generally no need to
use the choreographer, unless they are using OpenGL or other drawing methods that
are not part of the Android framework. Each process has its own instance of the
Choreographer.

The callback can be registered by calling postFrameCallbackDelayed(...) on the
choreographer. Among other uses, ViewRootImpl is using this callback to schedule
the next drawing operation after the root view has been (partially) invalidated. On
systems without native VSync support, a default frame interval of 10 ms is used.

Only the VSync events of the main display are currently used. Secondary displays
are not yet supported.

3.2.8. GLES20Canvas

The GLES20Canvas is a small wrapper around one of multiple renderer implementations
implemented in native C++ code. This canvas extends the normal Android Canvas,
13File location: frameworks/base/core/java/android/widget/Button.java
14File location: frameworks/base/core/java/android/view/Choreographer.java
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which offers the same functionality but with a Skia backend, only providing software
rendering. Listing 3.7 shows an example of how the layer between the native and Java
code is built using the Java Native Interface (JNI). All needed renderer methods are
exported to Java with the custom Android JNI wrapper.

static JNINativeMethod gMethods[] = {
// ...
{ "nCreateRenderer", "()I",

(void*) android_view_GLES20Canvas_createRenderer
}, // ...
{ "nDrawCircle", "(IFFFI)V",

(void*) android_view_GLES20Canvas_drawCircle
}

};

static OpenGLRenderer* android_view_GLES20Canvas_createRenderer
(JNIEnv* env, jobject clazz) {

OpenGLRenderer* renderer = new OpenGLRenderer();
renderer->initProperties();
return renderer;

}

static void android_view_GLES20Canvas_drawCircle(JNIEnv* env,
jobject clazz, OpenGLRenderer* renderer, jfloat x,
jfloat y, jfloat radius, SkPaint* paint) {

renderer->drawCircle(x, y, radius, paint);
}

Listing 3.7: android_view_GLES20Canvas.cpp: Layer between native C++ code and Java
abstraction using JNI.

Depending on the supplied arguments in the constructor, the canvas will choose
the appropriate renderer. In the normal case this is an OpenGLRenderer (subsec-
tion 3.2.10). It can also be a LayerRenderer, directly rendering to a Framebuffer
Object (FBO) that is visible on screen. This is the case when using an OpenGL
surface view (GLSurfaceView) to issue OpenGL commands directly from the appli-
cation code, for instance in a 3D game. A GLES20RecordingCanvas, which inherits
from the GLES20Canvas, is a special case, as it constructs its base class with a special
recording flag. The canvas will then initialize itself with a DisplayListRenderer

(subsection 3.2.11). The decision logic is quite simple and displayed in Listing 3.8.
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The listing also shows how the method drawCircle(...) is only a wrapper for the
underlying renderer.

In the example application, the canvas is using a OpenGLRenderer. The canvas of the
View is using a DisplayListRenderer created by the display list.

protected GLES20Canvas(boolean record, boolean translucent) {
// ...
if (record) {

mRenderer = nCreateDisplayListRenderer();
} else {

mRenderer = nCreateRenderer();
}
// ...

}

public void drawCircle(float cx, float cy,
float radius, Paint paint) {

nDrawCircle(mRenderer, cx, cy, radius, paint.mNativePaint);
}

Listing 3.8: GLES20Canvas.java: Choosing a renderer as a backend in the constructor, and
delegating all method calls to it using the example of DrawCircle(...).

3.2.9. Surface

Like the GLES20Canvas, the Surface also is implemented in native code and uses a
small JNI wrapper to make it available to Java. The surface is a handle to a raw
buffer that is being managed by the screen compositor, the SurfaceFlinger. The
communication is based on Binder IPC mechanisms, and the actual surface buffer
handle is therefore a Parcelable. In order to send it, it will be flattened into a parcel
and send via the Binder.

3.2.10. OpenGLRenderer

The OpenGLRenderer15 is an implementation of the Skia interface. It allows to use
the same method calls as with Skia, but it does all the drawing hardware accelerated
15File location: frameworks/base/libs/hwui/OpenGLRenderer.cpp



3.2. Rendering an example application 41

with OpenGL. On the way trough the pipeline, this is the first native-only class
implemented in C++. The renderer is designed to be used with the GLES20Canvas.
It was introduced with Android 3.0 and is only used in conjunction with display lists.

Listing 3.9 shows how the drawing commands get translated to actual OpenGL com-
mands, using the example of the DrawCircle(...) method. The circle coordinates
are translated into a Skia path object (SkPath). The renderer was created to replace
the Skia software drawing, but Skia is still used internally. The created path is tes-
sellated and the resulting polygons are written to a vertex buffer. This vertex buffer
is finally drawn with the glDrawArrays(...) OpenGL command as a triangle strip.

status_t OpenGLRenderer::drawCircle(float x, float y,
float radius, SkPaint* p) {

SkPath path;
path.addCircle(x, y, radius);
return drawConvexPath(path, p);

}

status_t OpenGLRenderer::drawConvexPath(
const SkPath& path, SkPaint* paint) {

VertexBuffer vertexBuffer;
PathTessellator::tessellatePath(path, paint,

mSnapshot->transform, vertexBuffer);
return drawVertexBuffer(vertexBuffer, paint);

}

status_t OpenGLRenderer::drawVertexBuffer(
const VertexBuffer& vertexBuffer,
kPaint* paint, bool useOffset) {

// Set up OpenGL drawing state
// ...
// Draw vertices using OpenGL
glDrawArrays(GL_TRIANGLE_STRIP, 0,

vertexBuffer.getVertexCount());
return DrawGlInfo::kStatusDrew;

}

Listing 3.9: The OpenGLRenderer draws a circle by converting it to a path and rendering
the tessellated path via glDrawArrays(...)

Drawing a display list, and therefore a whole view hierarchy, is quite simple for
the renderer, as the operations inside the display list do all the rendering themselves
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(Listing 3.10). The display list is first converted into a deferred display list by reordering
and merging the operations (subsection 3.1.3). The deferred display list is flushed and
will replay all internal drawing batches.

status_t OpenGLRenderer::drawDisplayList(
DisplayList* displayList, Rect& dirty,
int32_t replayFlags) {

// All the usual checks and setup operations
// (quickReject, setupDraw, etc.)
// will be performed by the display list itself
if (displayList && displayList->isRenderable()) {

DeferredDisplayList deferredList(*(mSnapshot->clipRect));
DeferStateStruct deferStruct(

deferredList, *this, replayFlags);
displayList->defer(deferStruct, 0);
return deferredList.flush(*this, dirty);

}
return DrawGlInfo::kStatusDone;

}

Listing 3.10: A DisplayList is drawn by first converting it into a DeferredDisplayList and
then replaying it

Fig. 3.13.: Visualized Overdraw on a
sample applications view
[Guy12a]

There are several layers of abstraction used with
the OpenGLRenderer, for example the use of
SkPaint. This paint can be applied to almost
all rendering operations, for example when ren-
dering font or backgrounds, and can consist of a
single color, a gradient or even a custom shader
attached to it. Single colors and gradients are
also implemented with shaders.

Drawing debug visualizations of Overdraw (Fig-
ure 3.13) is also a function of the renderer. This
is done via a multi-pass algorithm. When de-
bugging is enabled, the scene is first rendered normally, but with the stencil buffer
enabled. Every pixel written will increment the stencil counter at the pixel’s position,
regardless of whether it is discarded by the depth test or not. After this, four different
rectangles are drawn over the complete scene, each with a different color and stencil
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value attached. For example, the first and green rectangle will only color pixels where
the stencil value is one. This results in only the pixels being green, that are overdrawn
once. This is repeated for every other debug color as well.

3.2.11. DisplayListRenderer

The DisplayListRenderer implements the same interface as the OpenGLRenderer. It
is used with the GLES20RecordingCanvas. Instead of rendering directly to a surface,
the display list renderer stores each drawing operation to the internal display list for
later replay.

A method call is converted into a drawing operation and then added to the internal
list of display list operations (Listing 3.11). Similarly, every Skia API function call is
converted into a DisplayListOp.

Vector<DisplayListOp*> displayListOps;
status_t DisplayListRenderer::drawCircle(float x, float y,

float radius, SkPaint* paint) {
addDrawOp(new (alloc()) DrawCircleOp(x, y, radius, paint));
return DrawGlInfo::kStatusDone;

}

void DisplayListRenderer::addDrawOp(DrawOp* op) {
displayListOps.add(op);

}

Listing 3.11: The DisplayListRenderer converts every drawing call to a DisplayListOp and
adds it to the list of operations.

When multiple views are nested, as it is in the example and in almost every other appli-
cation, the display list renderer is asked to add a whole display list to the list of drawing
operations. The display list is converted into a DrawDisplayListOp (Listing 3.12),
which makes nesting of views possible.
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status_t DisplayListRenderer::drawDisplayList(
DisplayList* displayList, Rect& dirty,
int32_t flags) {

addDrawOp(
new (alloc()) DrawDisplayListOp(displayList, flags));

return DrawGlInfo::kStatusDone;
}

Listing 3.12: A nested DisplayList is added as a DrawDisplayListOp.

3.2.12. DeferredDisplayList

The DeferredDisplayList16 is responsible for reordering and merging display list
operations into batches. The merging is done in the same order the operations were
added to the original display list, by calling addDrawOp(...) for every operation
(subsection 3.1.3).

Fig. 3.14.: A DeferredDisplayList is flushing its operation by calling multiDraw() on the
first operation of a batch. An Op will draw itself and all other operations inside
the batch by calling the corresponding OpenGLRenderer method.

The OpenGLRenderer will create these deferred display lists and eventually calls the
flush(...) method, replaying every batch (Listing 3.13). In case of a merged batch,
the batch consists of a list of multiple operations. The method multiDraw(...) will be
called on the first operation in that list, with all the other operations as an argument.
The called operation is responsible for drawing all supplied operations at once and will
also call the OpenGLRenderer to actually execute the operation itself (Figure 3.14).
16File location: frameworks/base/libs/hwui/DeferredDisplayList.cpp
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Vector<Batch*> mBatches;
status_t DeferredDisplayList::flush(OpenGLRenderer& renderer,

Rect& dirty) {
status_t status = DrawGlInfo::kStatusDone;
status |= replayBatchList(mBatches, renderer, dirty);
return status;

}

static status_t replayBatchList(const Vector<Batch*>& batchList,
OpenGLRenderer& renderer, Rect& dirty) {

status_t status = DrawGlInfo::kStatusDone;
for (unsigned int i = 0; i < batchList.size(); i++) {

if (batchList[i]) {
status |= batchList[i]->replay(renderer, dirty, i);

}
}
return status;

}

Listing 3.13: Replaying of a DeferredDisplayList is as simple as iterating over every batch
in the correct order and replaying each of them.

3.2.13. DisplayListOp

Each drawing operation to be executed on a canvas has a corresponding display
list operation. All display list operations must implement the replay() method,
which executes the wrapped drawing operation. These drawing operations call the
OpenGLRenderer to render themselves. The reference to the renderer needs to be
supplied when creating an operation. onDefer() must also be implemented and must
return the operation’s draw and mergeId. Non-mergable batches are setting the
draw id to kOpBatch_None. Mergable operations must implement the multiDraw()

method, which is used when a whole batch of merged operations need to be rendered
at once. This subsection will explain a few important operations that are used inside
the example application and shows examples of how the replay(), onDefer() and
multiDraw() are implemented.
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3.2.13.1. DrawTextOp

The DrawTextOp is the most common operation for text drawing, used by almost every
standard widget that needs to display text.

The onDefer(...) method is called by the deferred display list. Listing 3.14 shows
how the mergeId and batchId are determined. The batchId depends on whether the
text is colored or not, and the mergeId depends on the color used. This makes sure
that all text operations with the same color can be merged together in one batch. Text
decorations will not be merged as they need to be drawn in the correct order. Also,
text shadows are not drawn by this operation as they cannot be correctly merged with
text.

virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {

deferInfo.batchId = mPaint->getColor() == 0xff000000 ?
DeferredDisplayList::kOpBatch_Text :
DeferredDisplayList::kOpBatch_ColorText;

deferInfo.mergeId = (mergeid_t)mPaint->getColor();

// don’t merge decorated text
deferInfo.mergeable = !(mPaint->getFlags() &

(kUnderlineText_Flag | kStrikeThruText_Flag));
}

Listing 3.14: The DrawOpText is determining its mergeId and batchId by the color of the
used paint.

Depending on whether an operation was merged with others or not, a different method
is used for drawing (Listing 3.15). applyDraw(...) is called when only one text
operation is needed to be drawn, which just renders the text with the OpenGLRenderer.

For drawing a whole text batch, the method multiDraw(...) iterates over every
operation inside the batch. For each operation OpenGLRenderer.drawText(...) is
called. The last operation inside a batch sets the drawOpMode is to flush, which tells
the FontRenderer to stop caching operations and start drawing all cached text.
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virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawText(mText, mX, mY, /* ... */);

}

virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {

status_t status = DrawGlInfo::kStatusDone;
for (unsigned int i = 0; i < ops.size(); i++) {

DrawOpMode drawOpMode = kDrawOpMode_Defer;
if(i == op.size() - 1)

drawOpMode = kDrawOpMode_Flush;

DrawTextOp& op = *((DrawTextOp*)ops[i].op);
status |= renderer.drawText(op.mText, op.mX, op.mY,

drawOpMode);
}
return status;

}

Listing 3.15: Rendering of one and multiple text elements, respectively. In order to render
multiple text elements, the font renderer is asked to cache all drawing operations
and flushing them once the last text element is processed.

3.2.13.2. DrawPatchOp

The DrawPatchOp is responsible for drawing a NinePatch. It is divided into nine
different areas (Figure 3.15b), which are stretched according to the one-pixel border
layout rules and according to the needs of the contents of the patch. The batchId of a
NinePatch is always kOpBatch_Patch, the merging id is a pointer to the used bitmap.
Therefore, all patches that use the same bitmap can be merged together. This is even
more important with the use of the asset atlas, as now all heavily used NinePatches
from the Android framework can potentially be merged together as the reside on the
same texture.

To draw one NinePatch the DrawPatchOp uses a single call to the OpenGLRenderer

(Listing 3.16). The function getMesh(...) returns a set of triangles, scaled to the
contents of the patch. This mesh is drawn by the renderer with the appropriate
NinePatch texture.
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(a) (b) (c)

Fig. 3.15.: A NinePatch and the resulting mesh.

a) Original Android NinePatch for a button, including one-pixel layout description border.

b) Set of triangles which result from the NinePatch. This is the mesh that will be used
to draw the button.

c) The used mesh with the applied texture.

In order to draw multiple patches at once, the DrawPatchOp needs to build a buffer
containing all triangles from all operations. This is done by iterating over all operations
and adding all vertices from their meshes to the vertex buffer. The vertex buffer is
then drawn with one OpenGL call.
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virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawPatch(mBitmap, getMesh(renderer),

getAtlasEntry(), getPaint(renderer));
}

virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {

Vector<TextureVertex> vertices;

for (unsigned int i = 0; i < ops.size(); i++) {
DrawPatchOp* patchOp = (DrawPatchOp*) ops[i].op;
const Patch* opMesh = patchOp->getMesh(renderer);
TextureVertex* opVertices = opMesh->vertices;
for (uint32_t j = 0; j < opMesh->verticesCount;

j++, opVertices++) {
vertices.add(TextureVertex(opVertices->position[0],

opVertices->position[1],
opVertices->texture[0],
opVertices->texture[1]));

}
}
return renderer.drawPatches(mBitmap, getAtlasEntry(),

&vertices[0], getPaint(renderer));
}

Listing 3.16: Rendering of one and multiple NinePatches, respectively. In order to render
multiple patches, one vertex buffer is build which includes all meshes from all
patches.

3.2.13.3. DrawDisplayListOp

Most applications have a complex view hierarchy and therefore display lists need to be
nestable. This operation in itself does not do very much, but is nevertheless essential
to support this nesting behavior. The operation will only relay the replay(...)

and defer(...) methods to the wrapped display list (Listing 3.17). Deferring will
add all operations of the nested display list to the deferred display list. This results
in multiple, nested display lists merged together, which is ideal for optimizing all
operations.
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virtual void defer(DeferStateStruct& deferStruct, int level) {
if (mDisplayList && mDisplayList->isRenderable()) {

mDisplayList->defer(deferStruct, level + 1);
}

}

virtual void replay(ReplayStateStruct& replayStruct, int level) {
if (mDisplayList && mDisplayList->isRenderable()) {

mDisplayList->replay(replayStruct, level + 1);
}

}

Listing 3.17: Replaying and deferring a DrawDisplayListOp is implemented by relaying the
command to the nested display list.

3.2.14. FontRenderer

The FontRenderer is responsible to render font with software and hardware rendering.
The Font used by the renderer are cached across the whole system and are shared
between applications.

(a) (b)

Fig. 3.16.: Font texture and font geometry in the example application

a) Font texture used by the FontRenderer.

b) Geometry used to render the characters, display as quads.

Figure 3.16a shows the font texture that is generated by the FontRenderer and up-
loaded to the GPU. When comparing with the view of the example application, one
can see that the font texture contains all used characters. Both the buttons text and
the action bars text were merged into one drawing operation and the characters are
sorted into the columns by their width.
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To draw the font to the screen, the renderer needs to generate a geometry to which
the texture gets bound (Figure 3.16b). The geometry is generated on the CPU and
then drawn via the OpenGL command glDrawElements().

If the device supports OpenGL ES 3.0, the FontRenderer will update and upload the
font cache texture asynchronously at the start of the frame, while the GPU is mostly
idle. This saves a few milliseconds per frame. The cache texture is a Pixel Buffer
Object (PBO), which makes a asynchronous upload possible [Guy13].

3.2.15. SurfaceFlinger

When all drawing commands are finished processing and eglSwapBuffers() was
called, the surface is queued again and sent as a parcel to the SurfaceFlinger, where
it will be composed and drawn on the screen.

3.2.16. Summary

(a) (b) (c) (d) (e)

Fig. 3.17.: The example application can be drawn with only five batches on the Nexus 7
(2013):

a) The layout draws the background image, which is a linear gradient.

b) Both the ActionBar and Button background NinePatch are drawn, which are both on
the AssetAtlas texture. These two operations were merged into one batch.

c) A linear gradient is drawn for the ActionBar.

d) Text for the Button and the ActionBar is drawn, using the same font texture. Again,
these two operations were merged into one batch, and the FontRenderer also used
one font texture for both text elements.

e) The application’s icon is drawn.
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This was only a brief overview of all critical elements in the Android UI rendering
pipeline. Figure 3.17 shows the visual steps taken by the renderer to display the view
to the user. The complete display list can be found in the appendix (Appendix A),
as well as the full list of generated OpenGL command calls (Appendix B).

3.2.17. Code Quality

All parts that are visible to and potentially used by a third party application developer
are documented in great depth via JavaDoc. This includes many Java classes like the
View and also some native classes used by the Native Development Kit (NDK).

But this documentation effort does not extend to the whole Android source code. As
soon as one looks at classes not designed to be used by an app developer, almost no
documentation exists. Newer files seem to have more comments embedded in the code
than older ones. But there are also a lot of comments describing missing features
(“Todo”) and describing potentially bugs that no one has come around fixing yet.

The Android source code is under heavy development since late 2007, with many new
features added that were not originally planned. It also shows in the source code, as
new features are designed around old ones in order not to disturb them. This results
in a lot of indirection and multiple code paths with complex decision logic.

Naming of the classes can also be quite confusing. Some names are used multiple times
in different components. For example, the Java DisplayList is actually a glorified
GL20RecordingCanvas, but the C++ DisplayList is an array of drawing operations.
These two classes are used in the Android rendering pipeline, but do not quite have
the same meaning.

3.3. Overdraw

In December 2012 Romain Guy, at the time a core member of the Android Graphics
Team, published an article about Android performance. Titled “Android Perfor-
mance Case Study”, this article described how to use the Android debugging tools
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to optimize performance. The focus of the article is on minimizing the problem of
Overdraw [Guy12a].

This article was published in 2012 when Android 4.2 was the newest release. Since
then, a lot of optimizations have been incorporated into the rendering pipeline, but
they are still referenced today as one of the most valuable reference on how to optimize
an Android application.

(a) (b) (c)

Fig. 3.18.: Font texture and font geometry used in the example application

a) Normal view of the application.

b) Unoptimized state of application, many pixels overdrawn 3 times (red areas). Average
overdraw is 4.13 times per pixel.

c) Optimized application, large areas are only overdrawn 1 time (blue areas). Average
overdraw is 1.80 times per pixel.

To verify if these findings by Guy are still valid with Android 4.4, overdraw was tested
with an example application. This example application was originally engineered by
Guy [Guy12b], featuring intentionally high overdraw (Figure 3.18b). The application
is showing multiple images in a list. A NinePatch is used as a border for the images,
making it look like an image taken by a instant camera. Finally, the images are
displayed with a small delay, simulating slow loading. In order to convey this to the
user, a placeholder image is used in place of the real images. The view hierarchy is
shown in Figure 3.19.
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Fig. 3.19.: View hierarchy generated with DroidInspector [Sri13]

Multiple optimizations were added to reduce overdraw (Figure 3.18c). A non-visible
background was removed by setting the window background to null. In addition,
placeholder images behind the real images were removed once the real image finished
loading by setting the image background to null. Finally, the used NinePatch was
modified to be fully translucent at the position where the image is displayed, effectively
cutting a hole in it. All optimizations can be toggled via the menu.

For testing, the Galaxy Nexus with an PowerVR SGX540 and Nexus 7 (2013) with
a Qualcomm Adreno 320 were chosen to represent the TBRs (subsection 2.3.2). To
represent IMRs (subsection 2.3.1), the Nexus 7 (2012) was chosen, which uses a Nvidia
Tegra 3. All devices were running Android 4.4.2. Testing was done by scrolling down
the image list revealing one new image and scrolling up again multiple times.
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Draw Process Execute

Galaxy Nexus
Full Overdraw 0.27 ms 0.67 ms 0.27 ms

Minimized Overdraw 0.27 ms 0.58 ms 0.31 ms

Nexus 7 (2012)
Full Overdraw 0.29 ms 0.525 ms 0.63 ms

Minimized Overdraw 0.29 ms 0.44 ms 0.54 ms

Nexus 7 (2013)
Full Overdraw 0.43 ms 0.98 ms 0.46 ms

Minimized Overdraw 0.43 ms 0.79 ms 0.46 ms
Nexus 7 (2013)
defering disabled

Full Overdraw 0.4 ms 1.04 ms 0.43 ms
Minimized Overdraw 0.4 ms 0.82 ms 0.43 ms

Table 3.1.: Measurement results of the example application on different devices. The dis-
played values are the median of 128 sample frames.

Test results (Table 3.1) were taken with the dumpysys command17 which outputs
samples taken over the last 128 frames. The Application was tested twice, once with
all optimizations disabled and once enabled. Additionally, deferring was disabled
on the Nexus 7 (2013) for one test by setting the debug.hwui.disable_draw_defer

property to false18. For complete measurement results of all devices see Appendix C.

The “Draw” time represents the time it takes the HardwareRenderer to call and
run view.getDisplayList(). This includes the user-supplied onDraw() method.
“Process” time represents the drawing of the display list to the underlying canvas. It
includes reordering and merging, as well as actually dispatching OpenGL commands.
Finally, the “Execute” time is how long calling eglSwapBuffers takes. Most TBR
GPUs are only now starting to draw the view to the screen. IMR on the other hand
are only waiting for all drawing commands to be finished.

Draw time was not affected by the optimizations and does not differ for any of the
devices. This was expected, as the optimizations did not change any onDraw(...)

method.

“Process” time was reduced on all devices with the optimizations enabled. The two
removed backgrounds are partially responsible for this, as they do not need to be
17adb shell dumpsys gfxinfo com.example.overdraw
18adb shell setprop debug.hwui.disable_draw_defer false
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added to the display list anymore, reducing the complexity of the view hierarchy.
These backgrounds would be concealed by other elements and therefore TBRs would
not render them. IMRs like the Nexus 7 (2012) are wasting processing time on these
elements. However, Android 4.4 detects both of these fully concealed backgrounds and
does not issue OpenGL calls for them, reducing the “Process” time. The optimized
NinePatch affects the “Process” as well as the “Execute” time. The texture assigned
to the content is empty and the geometry can be omitted so it does not have to be
rendered.

Execution time was only reduced on the Nexus 7 (2012), indicating a lower GPU load.

In conclusion, overdraw is not a major problem on modern Android devices anymore.
Complex view hierarchies including a lot of drawables are still the root cause of most
performance issues, which are indicated by the draw and process time. The debug
visualization of the overdraw is showing a symptom of the problem, but not the
problem itself. Developers who use the visualization to optimize their application
usually get a small performance boost, but only because they incidentally reduce the
view hierarchy complexity and number of drawables. More rewarding is using the
Hierarchy Viewer included in the Android Monitor and removing superfluous Views.
If the actual draw time is too high this could also indicate that too much work is
done in the onDraw(...) methods. By using a system trace these issues can also
be tracked down. Simplifying NinePatches can lead to some improvements, but are
generally not worth the effort.

3.4. Mobile Drivers and Vendor Tools

In order to test the vendor supplied tools for debugging OpenGL applications on
Android, a small demo application was used. This application only displays one
quad to the screen and relies on a complex fragment shader to render the scene
(Figure 3.20a). This is done via ray marching, which is a form of ray tracing. While
the OpenGL shader code is valid according to the specifications, most of the mobile
devices have trouble executing it. This results in a number of artifacts (Figure 3.20b),
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device crashes and sometimes in compilation errors in the driver. The shader caused
no issues on AMD’s, Nvidia’s desktop and Qualcomm’s Adreno GPUs.

(a) (b)

Fig. 3.20.: Example OpenGL application, using ray marching in the fragment shader to
render the scene.

a) Correct rendering of the scene without artifacts.

b) Artifacts caused by a faulty graphics driver.

To debug these artifacts, various vendor tools were tested under Ubuntu 12.04 and
Windows 7. In almost two weeks of attempts, no tool was able to attach to any device
and debug any OpenGL applications correctly. Nvidia’s Perf HUD ES did not connect
to the Nexus 7 (2012) running Android 4.4.2 and no support was available in their
official developer forum. Downgrading and flashing the device with a special version
of Android 4.2 supplied by Nvidia made the tool work. But as this Android version
is already outdated, no tests were conducted.

Qualcomms Adreno SDK did also not connect to any device. Furthermore, the demo
application “Neocore” refused to launch on an Android 4.4 device and crashed on
startup.

The PowerVR SDK could connect via ADB to a Galaxy Nexus, but only managed to
read the profiling data. No API trace could be generated. Furthermore, the offline
shader compiler crashed with the valid but complex fragment shader code.

As none of the tested tools worked with the application, the shader coded had to be
debugged and profiled by trial and error. Compilation failures of the shader can be
debugged by printing the log to the console, but not all drivers managed to produce
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a helpful error message. Commenting out various code pieces and trying again was
the last resort on those devices. To test whether a specific code path was chosen, a
path can output a special pixel color to the screen.



4. Conclusion and Outlook

The current state of the Android graphics pipeline was explored in this thesis, giving
an overview of the technology and operating principle of the UI rendering. Not only
because Android is supporting both software and hardware rendering, the rendering
and UI code is very complex. The nearly absent documentation does not help with
understanding the code. So this thesis offers a solid starting point to deepen one’s
knowledge of the Android platform and the UI rendering in particular. It can serve as
a foundation to every developer who wants to start working with the Android graphics
source code.

Hardware accelerated UI rendering seems to have a bright future in the Android
world and is a huge performance improvement. However, dropping software rendering
support seems not very likely in the near future. Most system applications still use
software rendering. Not all canvas operations are supported with OpenGL, and some
may never be. The available Android debugging tools, like the Android Monitor, are
a good start, but need a lot more work. Vendor tools in particular need to be updated
more often to support the newest Android version. The evaluation of problem areas
such as overdraw and graphics driver support have been a brief analysis, but further
studies are needed.
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A. Display list for the example view

1 Start display list (0x5ea4f008, PhoneWindow.DecorView, render=1)
2 Save 3
3 ClipRect 0.00, 0.00, 720.00, 1184.00
4 SetupShader, shader 0x5ea5af08
5 Draw Rect 0.00 0.00 720.00 1184.00
6 ResetShader
7 Draw Display List 0x5ea64d30, flags 0x244053
8 Start display list (0x5ea64d30, ActionBarOverlayLayout, render=1)
9 Save 3

10 ClipRect 0.00, 0.00, 720.00, 1184.00
11 Draw Display List 0x5ea5ad78, flags 0x24053
12 Start display list (0x5ea5ad78, FrameLayout, render=1)
13 Save 3
14 Translate (left, top) 0, 146
15 ClipRect 0.00, 0.00, 720.00, 1038.00
16 Draw Display List 0x5ea59bf8, flags 0x224053
17 Start display list (0x5ea59bf8, RelativeLayout, render=1)
18 Save 3
19 ClipRect 0.00, 0.00, 720.00, 1038.00
20 Save flags 3
21 ClipRect 32.00 32.00 688.00 1006.00
22 Draw Display List 0x5cfee368, flags 0x224073
23 Start display list (0x5cfee368, Button, render=1)
24 Save 3
25 Translate (left, top) 32, 32
26 ClipRect 0.00, 0.00, 243.00, 96.00
27 Draw patch 0.00 0.00 243.00 96.00
28 Save flags 3
29 ClipRect 24.00 0.00 219.00 80.00
30 Translate by 24.000000 23.000000
31 Draw Text of count 12, bytes 24
32 Restore to count 1
33 Done (0x5cfee368, Button)
34 Restore to count 1

60
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35 Done (0x5ea59bf8, RelativeLayout)
36 Done (0x5ea5ad78, FrameLayout)
37 Draw Display List 0x5ea64ac8, flags 0x24053
38 Start display list (0x5ea64ac8, ActionBarContainer, render=1)
39 Save 3
40 Translate (left, top) 0, 50
41 ClipRect 0.00, 0.00, 720.00, 96.00
42 Draw patch 0.00 0.00 720.00 96.00
43 Draw Display List 0x5ea64910, flags 0x224053
44 Start display list (0x5ea64910, ActionBarView, render=1)
45 Save 3
46 ClipRect 0.00, 0.00, 720.00, 96.00
47 Draw Display List 0x5ea63790, flags 0x224053
48 Start display list (0x5ea63790, LinearLayout, render=1)
49 Save 3
50 Translate (left, top) 17, 0
51 ClipRect 0.00, 0.00, 265.00, 96.00
52 Draw Display List 0x5ea5fe80, flags 0x224053
53 Start display list (0x5ea5fe80,
54 ActionBarView.HomeView, render=1)
55 Save 3
56 ClipRect 0.00, 0.00, 80.00, 96.00
57 Draw Display List 0x5ea5ed00, flags 0x224053
58 Start display list (0x5ea5ed00, ImageView, render=1)
59 Save 3
60 Translate (left, top) 8, 16
61 ClipRect 0.00, 0.00, 64.00, 64.00
62 Save flags 3
63 ConcatMatrix
64 [0.67 0.00 0.00] [0.00 0.67 0.00] [0.00 0.00 1.00]
65 Draw bitmap 0x5d33ae70 at 0.000000 0.000000
66 Restore to count 1
67 Done (0x5ea5ed00, ImageView)
68 Done (0x5ea5fe80, ActionBarView.HomeView)
69 Draw Display List 0x5ea63618, flags 0x224053
70 Start display list (0x5ea63618, LinearLayout, render=1)
71 Save 3
72 Translate (left, top) 80, 23
73 ClipRect 0.00, 0.00, 185.00, 49.00
74 Save flags 3
75 ClipRect 0.00 0.00 169.00 49.00
76 Draw Display List 0x5ea634a0, flags 0x224073
77 Start display list (0x5ea634a0, TextView, render=1)
78 Save 3
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79 ClipRect 0.00, 0.00, 169.00, 49.00
80 Save flags 3
81 ClipRect 0.00 0.00 169.00 49.00
82 Draw Text of count 9, bytes 18
83 Restore to count 1
84 Done (0x5ea634a0, TextView)
85 Restore to count 1
86 Done (0x5ea63618, LinearLayout)
87 Done (0x5ea63790, LinearLayout)
88 Done (0x5ea64910, ActionBarView)
89 Done (0x5ea64ac8, ActionBarContainer)
90 Draw patch 0.00 146.00 720.00 178.00
91 Done (0x5ea64d30, ActionBarOverlayLayout)
92 Done (0x5ea4f008, PhoneWindow.DecorView)



B. OpenGL commands for the
example view

1 eglCreateContext(version = 1, context = 0)
2 eglMakeCurrent(context = 0)
3 glGetIntegerv(pname = GL_MAX_TEXTURE_SIZE, params = [2048])
4 glGetIntegerv(pname = GL_MAX_TEXTURE_SIZE, params = [2048])
5 glGetString(name = GL_VERSION) = OpenGL ES 2.0 14.01003
6 glGetIntegerv(pname = GL_MAX_TEXTURE_SIZE, params = [2048])
7 glGenBuffers(n = 1, buffers = [1])
8 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 1)
9 glBufferData(target = GL_ARRAY_BUFFER, size = 64, data = [64 bytes],

10 usage = GL_STATIC_DRAW)
11 glDisable(cap = GL_SCISSOR_TEST)
12 glActiveTexture(texture = GL_TEXTURE0)
13 glGenBuffers(n = 1, buffers = [2])
14 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 2)
15 glBufferData(target = GL_ARRAY_BUFFER, size = 131072, data = 0x0,
16 usage = GL_DYNAMIC_DRAW)
17 glGetIntegerv(pname = GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS,
18 params = [16])
19 glGetIntegerv(pname = GL_MAX_TEXTURE_SIZE, params = [2048])
20 glGenTextures(n = 1, textures = [1])
21 glBindTexture(target = GL_TEXTURE_2D, texture = 1)
22 glEGLImageTargetTexture2DOES(target = GL_TEXTURE_2D,
23 image = 2138532008)
24 glGetError(void) = (GLenum) GL_NO_ERROR
25 glDisable(cap = GL_DITHER)
26 glClearColor(red = 0,000000, green = 0,000000, blue = 0,000000,
27 alpha = 0,000000)
28 glEnableVertexAttribArray(index = 0)
29 glDisable(cap = GL_BLEND)
30 glGenTextures(n = 1, textures = [2])
31 glBindTexture(target = GL_TEXTURE_2D, texture = 2)
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32 glPixelStorei(pname = GL_UNPACK_ALIGNMENT, param = 1)
33 glTexImage2D(target = GL_TEXTURE_2D, level = 0,
34 internalformat = GL_ALPHA, width = 1024, height = 512,
35 border = 0, format = GL_ALPHA, type = GL_UNSIGNED_BYTE,
36 pixels = [])
37 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MIN_FILTER,
38 param = 9728)
39 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MAG_FILTER,
40 param = 9728)
41 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_S,
42 param = 33071)
43 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_T,
44 param = 33071)
45 glViewport(x = 0, y = 0, width = 800, height = 1205)
46 glPixelStorei(pname = GL_UNPACK_ALIGNMENT, param = 1)
47 glTexSubImage2D(target = GL_TEXTURE_2D, level = 0,
48 xoffset = 0, yoffset = 0,
49 width = 1024, height = 80, format = GL_ALPHA,
50 type = GL_UNSIGNED_BYTE, pixels = 0x697b7008)
51 glInsertEventMarkerEXT(length = 0, marker = Flush)
52 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 0)
53 glBindTexture(target = GL_TEXTURE_2D, texture = 1)
54 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_S,
55 param = 33071)
56 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_T,
57 param = 33071)
58 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MIN_FILTER,
59 param = 9729)
60 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MAG_FILTER,
61 param = 9729)
62 glCreateShader(type = GL_VERTEX_SHADER) = (GLuint) 1
63 glShaderSource(shader = 1, count = 1, string =
64 attribute vec4 position;
65 attribute vec2 texCoords;
66 uniform mat4 projection;
67 uniform mat4 transform;
68 varying vec2 outTexCoords;
69
70 void main(void) {
71 outTexCoords = texCoords;
72 gl_Position = projection * transform * position;
73 }
74 , length = [0])
75 glCompileShader(shader = 1)
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76 glGetShaderiv(shader = 1, pname = GL_COMPILE_STATUS,
77 params = [1])
78 glCreateShader(type = GL_FRAGMENT_SHADER) = (GLuint) 2
79 glShaderSource(shader = 2, count = 1, string =
80 precision mediump float;
81
82 varying vec2 outTexCoords;
83 uniform sampler2D baseSampler;
84
85 void main(void) {
86 gl_FragColor = texture2D(baseSampler, outTexCoords);
87 }
88 , length = [0])
89 glCompileShader(shader = 2)
90 glGetShaderiv(shader = 2, pname = GL_COMPILE_STATUS, params = [1])
91 glCreateProgram(void) = (GLuint) 3
92 glAttachShader(program = 3, shader = 1)
93 glAttachShader(program = 3, shader = 2)
94 glBindAttribLocation(program = 3, index = 0, name = position)
95 glBindAttribLocation(program = 3, index = 1, name = texCoords)
96 glGetProgramiv(program = 3, pname = GL_ACTIVE_ATTRIBUTES, params = [2])
97 glGetProgramiv(program = 3, pname = GL_ACTIVE_ATTRIBUTE_MAX_LENGTH,
98 params = [10])
99 glGetActiveAttrib(program = 3, index = 0, bufsize = 10, length = [0],

100 size = [1], type = [GL_FLOAT_VEC4], name = position)
101 glGetActiveAttrib(program = 3, index = 1, bufsize = 10, length = [0],
102 size = [1], type = [GL_FLOAT_VEC2], name = texCoords)
103 glGetProgramiv(program = 3, pname = GL_ACTIVE_UNIFORMS, params = [3])
104 glGetProgramiv(program = 3, pname = GL_ACTIVE_UNIFORM_MAX_LENGTH,
105 params = [12])
106 glGetActiveUniform(program = 3, index = 0, bufsize = 12, length = [0],
107 size = [1], type = [GL_FLOAT_MAT4], name = projection)
108 glGetActiveUniform(program = 3, index = 1, bufsize = 12, length = [0],
109 size = [1], type = [GL_FLOAT_MAT4], name = transform)
110 glGetActiveUniform(program = 3, index = 2, bufsize = 12, length = [0],
111 size = [1], type = [GL_SAMPLER_2D], name = baseSampler)
112 glLinkProgram(program = 3)
113 glGetProgramiv(program = 3, pname = GL_LINK_STATUS, params = [1])
114 glGetUniformLocation(program = 3, name = transform) = (GLint) 2
115 glGetUniformLocation(program = 3, name = projection) = (GLint) 1
116 glUseProgram(program = 3)
117 glGetUniformLocation(program = 3, name = baseSampler) = (GLint) 0
118 glUniform1i(location = 0, x = 0)
119 glUniformMatrix4fv(location = 1, count = 1, transpose = false,
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120 value = [ 0.0025, 0.0, 0.0, 0.0,
121 0.0, -0.001659751, 0.0, 0.0,
122 0.0, 0.0, -1.0, 0.0,
123 -1.0, 1.0, -0.0, 1.0])
124 glUniformMatrix4fv(location = 2, count = 1, transpose = false,
125 value = [800.0, 0.0, 0.0, 0.0,
126 0.0, 1205.0, 0.0, 0.0,
127 0.0, 0.0, 1.0, 0.0,
128 0.0, 0.0, 0.0, 1.0])
129 glEnableVertexAttribArray(index = 1)
130 glVertexAttribPointer(indx = 0, size = 2, type = GL_FLOAT,
131 normalized = false, stride = 16, ptr = 0x681e7af4)
132 glVertexAttribPointer(indx = 1, size = 2, type = GL_FLOAT,
133 normalized = false, stride = 16, ptr = 0x681e7afc)
134 glVertexAttribPointerData(indx = 0, size = 2, type = GL_FLOAT,
135 normalized = false, stride = 16, ptr = 0x??,
136 minIndex = 0, maxIndex = 4)
137 glVertexAttribPointerData(indx = 1, size = 2, type = GL_FLOAT,
138 normalized = false, stride = 16, ptr = 0x??,
139 minIndex = 0, maxIndex = 4)
140 glDrawArrays(mode = GL_TRIANGLE_STRIP, first = 0, count = 4)
141 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 2)
142 glBufferSubData(target = GL_ARRAY_BUFFER, offset = 0, size = 576,
143 data = [576 bytes])
144 glBufferSubData(target = GL_ARRAY_BUFFER, offset = 576, size = 192,
145 data = [192 bytes])
146 glEnable(cap = GL_BLEND)
147 glBlendFunc(sfactor = GL_SYNC_FLUSH_COMMANDS_BIT,
148 dfactor = GL_ONE_MINUS_SRC_ALPHA)
149 glUniformMatrix4fv(location = 2, count = 1, transpose = false,
150 value = [1.0, 0.0, 0.0, 0.0,
151 0.0, 1.0, 0.0, 0.0,
152 0.0, 0.0, 1.0, 0.0,
153 0.0, 0.0, 0.0, 1.0])
154 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 0)
155 glGenBuffers(n = 1, buffers = [3])
156 glBindBuffer(target = GL_ELEMENT_ARRAY_BUFFER, buffer = 3)
157 glBufferData(target = GL_ELEMENT_ARRAY_BUFFER, size = 24576,
158 data = [24576 bytes], usage = GL_STATIC_DRAW)
159 glVertexAttribPointer(indx = 0, size = 2, type = GL_FLOAT,
160 normalized = false, stride = 16, ptr = 0xbefdcf18)
161 glVertexAttribPointer(indx = 1, size = 2, type = GL_FLOAT,
162 normalized = false, stride = 16, ptr = 0xbefdcf20)
163 glVertexAttribPointerData(indx = 0, size = 2, type = GL_FLOAT,
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164 normalized = false, stride = 16, ptr = 0x??,
165 minIndex = 0, maxIndex = 48)
166 glVertexAttribPointerData(indx = 1, size = 2, type = GL_FLOAT,
167 normalized = false, stride = 16, ptr = 0x??,
168 minIndex = 0, maxIndex = 48)
169 glDrawElements(mode = GL_MAP_INVALIDATE_RANGE_BIT, count = 72,
170 type = GL_UNSIGNED_SHORT, indices = 0x0)
171 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 2)
172 glBufferSubData(target = GL_ARRAY_BUFFER, offset = 768, size = 576,
173 data = [576 bytes])
174 glDisable(cap = GL_BLEND)
175 glUniformMatrix4fv(location = 2, count = 1, transpose = false,
176 value = [1.0, 0.0, 0.0, 0.0,
177 0.0, 1.0, 0.0, 0.0,
178 0.0, 0.0, 1.0, 0.0,
179 0.0, 33.0, 0.0, 1.0])
180 glVertexAttribPointer(indx = 0, size = 2, type = GL_FLOAT,
181 normalized = false, stride = 16, ptr = 0x300)
182 glVertexAttribPointer(indx = 1, size = 2, type = GL_FLOAT,
183 normalized = false, stride = 16, ptr = 0x308)
184 glDrawElements(mode = GL_MAP_INVALIDATE_RANGE_BIT, count = 54,
185 type = GL_UNSIGNED_SHORT, indices = 0x0)
186 glEnable(cap = GL_BLEND)
187 glUniformMatrix4fv(location = 2, count = 1, transpose = false,
188 value = [1.0, 0.0, 0.0, 0.0,
189 0.0, 1.0, 0.0, 0.0,
190 0.0, 0.0, 1.0, 0.0,
191 0.0, 0.0, 0.0, 1.0])
192 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 0)
193 glBindTexture(target = GL_TEXTURE_2D, texture = 2)
194 glVertexAttribPointer(indx = 0, size = 2, type = GL_FLOAT,
195 normalized = false, stride = 16, ptr = 0x696bd008)
196 glVertexAttribPointer(indx = 1, size = 2, type = GL_FLOAT,
197 normalized = false, stride = 16, ptr = 0x696bd010)
198 glVertexAttribPointerData(indx = 0, size = 2, type = GL_FLOAT,
199 normalized = false, stride = 16, ptr = 0x??,
200 minIndex = 0, maxIndex = 80)
201 glVertexAttribPointerData(indx = 1, size = 2, type = GL_FLOAT,
202 normalized = false, stride = 16, ptr = 0x??,
203 minIndex = 0, maxIndex = 80)
204 glDrawElements(mode = GL_MAP_INVALIDATE_RANGE_BIT, count = 120,
205 type = GL_UNSIGNED_SHORT, indices = 0x0)
206 glGenTextures(n = 1, textures = [3])
207 glBindTexture(target = GL_TEXTURE_2D, texture = 3)
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208 glPixelStorei(pname = GL_UNPACK_ALIGNMENT, param = 4)
209 glTexImage2D(target = GL_TEXTURE_2D, level = 0, internalformat = GL_RGBA,
210 width = 64, height = 64, border = 0, format = GL_RGBA,
211 type = GL_UNSIGNED_BYTE, pixels = 0x420cd930)
212 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MIN_FILTER,
213 param = 9728)
214 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_MAG_FILTER,
215 param = 9728)
216 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_S,
217 param = 33071)
218 glTexParameteri(target = GL_TEXTURE_2D, pname = GL_TEXTURE_WRAP_T,
219 param = 33071)
220 glUniformMatrix4fv(location = 2, count = 1, transpose = false,
221 value = [64.0, 0.0, 0.0, 0.0,
222 0.0, 64.0, 0.0, 0.0,
223 0.0, 0.0, 1.0, 0.0,
224 16.0, 38.0, 0.0, 1.0])
225 glBindBuffer(target = GL_ARRAY_BUFFER, buffer = 1)
226 glVertexAttribPointer(indx = 0, size = 2, type = GL_FLOAT,
227 normalized = false, stride = 16, ptr = 0x0)
228 glVertexAttribPointer(indx = 1, size = 2, type = GL_FLOAT,
229 normalized = false, stride = 16, ptr = 0x8)
230 glBindBuffer(target = GL_ELEMENT_ARRAY_BUFFER, buffer = 0)
231 glDrawArrays(mode = GL_TRIANGLE_STRIP, first = 0, count = 4)
232 glGetError(void) = (GLenum) GL_NO_ERROR
233 eglSwapBuffers()



C. Overdraw measurements
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Fig. C.1.: Galaxy Nexus: Full overdraw
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Fig. C.2.: Galaxy Nexus: Optimized overdraw
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Fig. C.3.: Nexus 7 (2012): Full overdraw
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Fig. C.4.: Nexus 7 (2012): Optimized overdraw
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Fig. C.5.: Nexus 7 (2013): Full overdraw
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Fig. C.6.: Nexus 7 (2013): Optimized overdraw
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Fig. C.8.: Nexus 7 (2013): Optimized overdraw with disabled deferred rendering
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Fig. C.7.: Nexus 7 (2013): Full overdraw with disabled deferred rendering

All diagrams were generated with Matplotlib [Hun07].
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Glossary

Early-Z is an optimization step in the render pipeline, which is traditionally executed right

before the fragment shader and therefore before the Z-Test. It operates on a per-pixel

level and allows the rejection of fragments which are occluded by the current content

of the depth buffer. Early-Z is disabled if the fragment shader uses the discard

instruction, writes to the depth-buffer or when alpha test is enabled [Per07, pp. 2-3].

(5, 10)

Hierarchical Z-Buffer (Hi-Z) allows the rejection of whole tiles on a hierarchical fashion.

This is done by rendering a depth map from the scene into a low resolution buffer,

in which non-occluded pixels (which represent tiles in the full resolution scene) can

be rejected. This can be done multiple times with different resolutions to achieve the

best result [Per07]. The same limitations as with Early-Z also apply. (5, 10)

Hidden Surface Removal (HSR) is, much like Early-Z, and optimization step in the render

pipeline before the execution of the fragment shader. This technology is often used

with Tiled-Rendering (see 2.3.2) [Gan13], where a Z-Buffer is saved in an extremely

fast on-die memory and is used to reject pixels that will be occluded [Ima09, pp. 6-7].

The same limitations as with Early-Z also apply. (5, 12, 13)

NinePatch is a kind of bitmap, which uses a one-pixel border around the image to divide

it into nine or more sections. Each of these sections will then be scaled to the

content, with the mentioned border defining of the stretchable areas [And13c]. More

information is available on the Android developer documentation [And13b]. (18–20,

23, 24, 29, 37, 47, 53, 54, 56)

Overdraw happens when an object is drawn to the framebuffer only to be completely or

partially painted over by yet another object. This wasted processing time is called

“overdraw”. (10, 14, 25, 33, 42, 53)
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Vertical Synchronization (VSync) is a way to prevent screen tearing, which happens when

the display shows information from two or more frames at once. VSync prevents this

by disallowing writes to the currently displayed framebuffer’s memory. The driver

commonly uses two framebuffers, one that is currently displayed and one that can be

written to, and switches between them. This page flipping usually happens at the

refresh rate of the display. (27, 28, 30–32, 38)

Zygote is an Android system service which is used to launch applications. It is one of

the most important system services, as it is the parent of all launched application

processes. On startup, Zygote starts a Java process and preloads frequently used Java

classes from the Android framework. To start a new application, Zygote forks and

the applications code is loaded in the child. No additional memory is allocated, as

all needed Java classes are already in memory. Android implements a Copy-on-Write

strategy [Ana13]. (18, 19, 29)
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